A Growing Neural Gas Network Learns Topologies
نویسنده
چکیده
An incremental network model is introduced which is able to learn the important topological relations in a given set of input vectors by means of a simple Hebb-like learning rule. In contrast to previous approaches like the "neural gas" method of Martinetz and Schulten (1991, 1994), this model has no parameters which change over time and is able to continue learning, adding units and connections, until a performance criterion has been met. Applications of the model include vector quantization, clustering, and interpolation.
منابع مشابه
Efficient Evolution of Neural Network Topologies
Neuroevolution, i.e. evolving artificial neural networks with genetic algorithms, has been highly effective in reinforcement learning tasks, particularly those with hidden state information. An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT) that outpe...
متن کاملEvolving Neural Network through Augmenting Topologies
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover...
متن کاملEvolving Neural Networks through Augmenting Topologies
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT) that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover o...
متن کاملRobot Soccer With GNG & NEAT
Complexification is an essential concept in evolutionary robotics that develops dynamic neural networks over generations with the aim of increasing their capabilities. Artificial networks networks are complexified by altering, adding and removing nodes and connections from the neural network structure. The dimensionality of the input layer in a neural network also plays a significant role in th...
متن کاملGenetically Searching the Space of Network Topologies
An algorithm that learns from a set of examples should ideally be able to exploit the available resources of a abundant computing power and b domain speci c knowledge to improve its ability to generalize Connectionist theory re nement systems which use back ground knowledge to select a neural network s topology and initial weights have proven to be e ective at exploiting domain speci c knowledg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994